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Climate variation and population dynamics 

Abstract 26 

The interaction between endogenous dynamics and exogenous environmental variation is 27 

central to population dynamics. Although investigations into the effects of changing mean climate is 28 

widespread, changing patterns of variation in environmental forcing also affect dynamics in complex 29 

ways. Using wavelet and time-series analyses, we identify a regime shift in the dynamics of a moth 30 

species in California from shorter to longer period oscillations over a 34-year census, and 31 

contemporaneous changes in regional precipitation dynamics. Simulations support the hypothesis that 32 

shifting precipitation dynamics drove changes in moth dynamics, possibly due to stochastic resonance 33 

with delayed density-dependence. The observed shift in climate dynamics and the interaction with 34 

endogenous dynamics mean that predicting future population dynamics will require information on 35 

both climatic shifts and their interaction with endogenous density dependence, a combination that is 36 

rarely available. Consequently, models based on historical data may be unable to predict future 37 

population dynamics. 38 

Introduction 39 

The dynamics of populations reflect the interplay between endogenous demographic and 40 

exogenous environmental drivers. Since its inception, population ecology has focused on debates about 41 

the relative contribution of these components to the generation of several salient phenomena observed 42 

in the dynamics of natural and laboratory populations, particularly cyclic fluctuations (Nicholson 1933; 43 

Andrewartha & Birch 1954; Barraquand et al. 2017).  More recently, it has been recognized that both 44 

endogenous and exogenous drivers play important roles in generating observed population dynamics, 45 

and that endogenous deterministic dynamics and exogenous environmental noise or perturbations may 46 

combine to generate differing dynamics than would be expected for either component alone (Bjørnstad 47 

& Grenfell 2001; Turchin 2003; Barraquand et al. 2017).  There has been additional motivation to 48 

understand the effects of climate on population dynamics as the effects of global climate change on the 49 

planet’s biota have become more apparent (Walther et al. 2002; Parmesan 2006).  Climate change is 50 
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expected to result in increased climate variability (Coumou & Rahmstorf 2012), as well as alterations 51 

to patterns of large-scale climate oscillations (Simon Wang et al. 2017), both of which are important 52 

drivers of local population dynamics.  In a prominent example, changes in oceanic temperature 53 

oscillation regimes have resulted in dramatic changes to precipitation patterns in California (Simon 54 

Wang et al. 2017), with large impacts to society and natural ecosystems.   55 

Climate variation can have direct effects on interannual fluctuations in population size or may 56 

interact in complex ways with endogenous dynamics of populations.  For example, environmental 57 

perturbations can sustain population oscillations that might otherwise decay to a stable equilibrium 58 

(Tomé & De Oliveira 2009; Barraquand et al. 2017).  Climate change has also appeared to cause the 59 

collapse of population cycles of many species across Europe (Ims et al. 2008; Cornulier et al. 2013).  60 

Environmental perturbations with different spectra of variability can also amplify, dampen, or impose 61 

their own spectra on oscillatory populations depending on the “colour” (temporal autocorrelation) of 62 

environmental spectra relative to the spectra of the endogenous dynamics of the population (Greenman 63 

& Benton 2003).  Changing climate can also interact in a non-stationary way with population 64 

dynamics, such as transient effects of long-term climate oscillations on epidemic disease cycles (Rodó 65 

et al. 2002; Cazelles et al. 2005).  However, testing for such effects on population dynamics of other 66 

kinds of organisms requires rarely available long-term population data.   67 

In the present study, we examined how changing precipitation dynamics interact with the 68 

endogenous population dynamics of an extensively studied insect species, the Ranchman’s tiger moth 69 

(Arctia virginalis). We analyzed 34 years of census data from northern California, over a period during 70 

which there have been significant shifts in the dynamics of regional climate (Simon Wang et al. 2017). 71 

Using time series analyses and simulations, we tested for changes in population dynamics, and 72 

compared multiple possible mechanisms for observed shifts.  Using simulations, we tested the 73 

hypotheses that shifting dynamics were because 1. underlying dynamics were first masked and later 74 

amplified by precipitation, 2. underlying dynamics were first amplified and later masked by 75 
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precipitation, or 3. dynamical shifts were driven completely exogenously by changing precipitation 76 

dynamics. 77 

Materials & Methods 78 

Description of system 79 

 Ranchman’s tiger moth (Arctia virginalis) is a univoltine, day-active Arctiine moth, native to 80 

much of the western United States.  Adult moths emerge in late spring or early summer and have a 81 

flight period of several weeks during which they do not feed.  Eggs are laid on low vegetation or litter 82 

in early summer; small caterpillars hatch soon after eggs are laid.  Early instar caterpillars are heavily 83 

preyed upon by ground nesting ants, and are potentially food-limited during seasonal senescence of 84 

vegetation in Mediterranean summers (Karban et al. 2013, 2017).  Time series analyses have shown 85 

that greater precipitation during the previous year results in greater population growth, possibly due to 86 

increased food availability during the summer drought (Karban & de Valpine 2010; Karban et al. 87 

2017). Caterpillars feed continuously over the winter period and do not diapause in California.  After 88 

this, they move up to feed on higher vegetation and become more visible in late winter in California. 89 

Caterpillars are generalists, with a preference for alkaloid-containing hosts (English-Loeb et al. 1993; 90 

Karban et al. 2010).  Caterpillars are also frequently attacked by tachinid parasitoids, Thelaira 91 

americana (Karban & de Valpine 2010), which are specialists on Arctiine moths (Arnaud 1978), and 92 

may functionally be specialists on Ranchman’s tiger moth at our study site, the Bodega Marine 93 

Reserve.  However, analyses have suggested that parasitism has little effect on caterpillar population 94 

dynamics (Karban & de Valpine 2010).  Caterpillar populations at the Bodega Marine Reserve and 95 

other sites often exhibit high mortality rates after high population density years due to a granulovirus. 96 

Monitoring at Bodega and other sites has shown delayed density-dependent infection and mortality 97 

rates due to granulovirus (Pepi, Pan & Karban, unpublished data). 98 

Censuses 99 
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Caterpillar censuses were conducted on perennial evergreen yellow bush lupine (Lupinus 100 

arboreus) bushes at Bodega Marine Reserve in Sonoma County, California (38°19'05"N, 101 

123°04'12"W).  The number of caterpillars on 10 lupine bushes in the same patch were counted yearly 102 

from 1986 to 2019 (>10 in 1986). Bushes were censused in the last week of March each year.  Previous 103 

repeated censuses within a year between late February and the end of March suggest that population 104 

estimates were unlikely to vary significantly due to changes in seasonal phenology from year to year 105 

(Karban and Grof-Tisza, unpublished data), because of the long development period of caterpillars and 106 

their limited mobility during this stage. The same lupine bushes were censused each year; however, the 107 

identity of bushes changed because these lupines were short lived (< 7yr).  To account for variation in 108 

sampling effort, area of each lupine bush censused was measured to calculate caterpillar density per m2 109 

(plotted as caterpillars per 100 m2 in Figure 3 for legibility). Precipitation was recorded at the site as 110 

part of ongoing climate monitoring by the University of California and using a rain gauge at the study 111 

site (US Weather Bureau type manual rain gauge prior to 1992 and an optical rain gauge ORG-815, 112 

Optical Scientific, Gaithersburg, MD since 1992 with a Hydrological Services TB4 tipping bucket, 113 

Campbell Scientific, Ogden, UT since 2003).  For analyses, total annual precipitation within the 114 

hydrologic year was calculated (from October 1st of the previous year to September 30th of the current 115 

year). 116 

Statistical analyses 117 

To test for non-stationary relationships between precipitation and caterpillar dynamics over 118 

time, wavelet analysis was conducted separately on logged and scaled caterpillar and scaled 119 

precipitation time series, and as wavelet coherence analyses on both series (Figure 3). Scaling was 120 

accomplished by subtracting the mean and dividing by the standard deviation (scale() in R). Analyses 121 

were conducted using the package BIWAVELET (Gouhier et al. 2019), using Morlet wavelet transforms.  122 

In addition, change-point analyses were conducted using the SEGLM and TSDYN packages (Antonio & 123 

Stigler 2009; Stigler 2019), with a model containing direct and delayed density-dependence, and a 124 
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separate model also including precipitation as a covariate. We included precipitation as a covariate 125 

based on previous knowledge that precipitation was important to dynamics. We included direct density-126 

dependence based on previous detection in time series analyses (Karban & de Valpine 2010), and 127 

delayed density-dependence based on wavelet periodogram results and the observation of delayed-128 

density dependent mortality from granulovirus in field studies (Pepi, Pan & Karban, unpublished data). 129 

Models with and without a threshold (C) were compared using AIC. Break point models were of the 130 

form: 131 

𝑋𝑡~𝑁𝑜𝑟𝑚𝑎𝑙( 𝑎0,1 + 𝑎1,1𝑋𝑡−1 + 𝑎2,1𝑋𝑡−2 + 𝛽1,1𝑃𝑟𝑒𝑐𝑖𝑝𝑡−1, 𝜎1
2)   |   𝑡 ≤ 𝐶 132 

𝑋𝑡~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑎0,2 + 𝑎1,2𝑋𝑡−1 + 𝑎2,2𝑋𝑡−2 + 𝛽1,2𝑃𝑟𝑒𝑐𝑖𝑝𝑡−1, 𝜎2
2)  |   𝑡 ≥ 𝐶, 133 

in which 𝑋𝑡 is log population density [𝑙𝑛(𝑐𝑜𝑢𝑛𝑡/𝑎𝑟𝑒𝑎)],  𝑎0 is the intercept, 𝑎1 is direct density 134 

dependence, 𝑎𝟐 is delayed density dependence, and 𝛽1 is the effect of precipitation,  𝜎2 is the variance, 135 

with a separate parameter estimate for each before and after the threshold. 136 

Bayesian state space population models using a Poisson observation process were constructed 137 

to test for direct and delayed density-dependence and effects of precipitation. We conducted this as a 138 

separate step from testing for thresholds to avoid identifiability issues due to limited data availability. 139 

We primarily examined a model with the same process structure as breakpoint models, including direct 140 

and delayed density dependence and an effect of precipitation, based on a priori knowledge about the 141 

system. For comparison, models with all possible combinations of variables were generated and 142 

compared using WAIC (Vehtari et al. 2017).  State space models were fit to the time series from 1986-143 

2004 and 2004-2019 separately and results compared, based on findings of change-point analyses. The 144 

full state-space model was of the form: 145 

𝑌𝑡~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(exp(𝑋𝑡) ∗ 𝑎𝑟𝑒𝑎𝑡) 146 

𝑋𝑡~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑎0 + 𝑎1𝑋𝑡−1 + 𝑎𝟐𝑋𝑡−2 + 𝛽1𝑃𝑟𝑒𝑐𝑖𝑝𝑡−1, 𝜎2 ), 147 



 

Climate variation and population dynamics 

in which 𝑌𝑡 is caterpillar count, 𝑋𝑡 is the estimated population density state on a log scale, 𝑎𝑟𝑒𝑎𝑡 is the 148 

area of lupine sampled, 𝑎0 is the intercept, 𝑎1 is direct density dependence, 𝑎𝟐 is delayed density 149 

dependence, 𝛽1 is the effect of precipitation, and 𝜎2 is the process variance. Models were fitted in JAGS 150 

with interface in R using RJAGS (Plummer 2019) and R2JAGS (Yu-Sung Su & Yajima 2015). We used a 151 

vague regularizing Gaussian prior for all parameters [𝑁𝑜𝑟𝑚𝑎𝑙(0, 10)], except for the process variance 152 

(𝜎2), for which we used a uniform prior [𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 10)].  Model convergence was assessed using 153 

the CODA (Martyn et al. 2019) package, by visualizing chains (Figures S1-3) and the �̂� convergence 154 

criterion (Gelman & Rubin 1992). We also conducted one-step ahead simulations as posterior 155 

predictive checks (Figures S4-6), for which P-values were 0.5±0.03, indicating acceptable model fit. 156 

Models were fitted using 3 MCMC chains of 20,000 iterations, with 1,000 iterations of burn-in. All �̂� 157 

values were <1.001. 158 

To ascertain the mechanisms driving shifts in dynamics, we conducted deterministic simulations 159 

by projecting populations into the future using parameter values sampled from the posteriors of fitted 160 

state space process models.  Simulations were also conducted with fitted density-dependence 161 

parameters, but with all precipitation effects drawn from the posterior of the model with the highest 162 

estimated effect of precipitation (from the second half of the series; 𝛽1=0.922).  Another simulation was 163 

conducted using the fitted process model from the second part of the series, but with density-dependent 164 

parameters (𝑎1, 𝑎2) set to zero. For simulations, observed starting population sizes were used, and 165 

observed precipitation values were used for the entire period. For each mechanistic scenario, 10,000 166 

simulations were conducted, each based on a separate draw from posteriors. Simulated population 167 

trajectories were wavelet transformed, and a dissimilarity relative to the true population series was 168 

calculated based on the method of Rouyer et al. (2008b) (Table S3, Figures S7-8), all using BIWAVELET 169 

(Gouhier et al. 2019).  170 

Results  171 
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Caterpillar population dynamics exhibited a clear regime shift during our study. Wavelet 172 

spectrograms show that dominant oscillatory periods of caterpillar and precipitation dynamics shifted 173 

from short-period (2-3 yr) to long-period oscillations (4-6 yr; Figure 1c,e), though periodicity was only 174 

significant at the 95% level for precipitation in the first part of the series (2-3 yr periodicity from 175 

~1992-1999) and caterpillars in the second part of the series (4-6 yr periodicity from ~2003-2013). 176 

Precipitation dynamics changed after ca. 1999, and caterpillar dynamics changed shortly thereafter (ca. 177 

2002). Wavelet coherence between precipitation and caterpillar numbers shifted from a 3-year period in 178 

the early part of the series to a 3-6 year period after ca. 2005 (Figure 1g), suggesting a role of 179 

precipitation in shifts in caterpillar population dynamics. The observed shift in precipitation dynamics 180 

in turn was likely caused by shifting oceanic climate oscillations; the Pacific Decadal Oscillation and 181 

offshore sea surface temperature switched from a warm to a cold phase after 1999, which resulted in 182 

shifts in dynamics of several marine species at that time (Cloern et al. 2010; Thomson et al. 2010).  A 183 

similar climate regime of high-amplitude, long-period oscillations between multi-year drought and high 184 

precipitation is expected to be the norm for California in the future (Swain et al. 2018). 185 

Change-point analyses found a change in dynamics with a threshold in 2002 (∆AIC=4.8 relative 186 

to model without a threshold) in a model without precipitation, or in 2004 in a model including 187 

precipitation (∆AIC=6.5).  Before the threshold, direct density-dependence was estimated to be negative 188 

and this became positive after the threshold, though there was limited evidence that these estimates 189 

were different from zero (0.10>P>0.09; see Table 1). In models that included precipitation, its effects 190 

were always near zero before the threshold, and strongly positive after the threshold (Table 1). Delayed 191 

density-dependence had negative parameter estimates in all models, with the most evidence for delayed 192 

density dependence after the threshold in the model without precipitation (P=0.019), and weaker 193 

evidence otherwise (P>0.2). 194 

Results from Bayesian Poisson state-space models corresponded broadly with those from the 195 

change point analyses, showing a shift in dynamics from the first to the second period. The full model 196 
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was an acceptable fit relative to other model structures tested, though large differences were not 197 

detected due to the state-space structure and limited data availability (Table S1; ΔWAIC<2 for all 198 

models). 90% high density posterior intervals (HDPI) that are superior for characterizing MCMC 199 

posteriors (because of more samples in the tails; Kruschke 2014) show the following: Considering the 200 

full model fitted to the entire series (1986-2019), direct density-dependence was weak (𝑎1 =-0.11; 90% 201 

HDPI: -0.23 – 0.47), delayed density-dependence was negative (𝑎2 =-0.3 ; 90% HDPI: -0.63 – 0.03]), 202 

and there was a weak positive effect of rainfall (𝛽1 =0.30; 90% HDPI: -0.08 – 0.70; Figure 2).  For the 203 

first part of the series (1986-2004), direct density-dependence was negative (𝑎1 =-0.63; 90% HDPI: -204 

1.19 – -0.10), delayed density-dependence was negative but weak (𝑎2 =-0.27; 90% HDPI: -0.78 – 205 

0.26), and the effect of precipitation was weak (𝛽1 =0.26; 90% HDPI: -0.17 – 0.68; Figure 2).  For the 206 

second part of the series (2004-2019), direct density-dependence was positive (𝑎1 =0.46; 90% HDPI: 207 

0.03 – 0.82), delayed density-dependence was negative but weak (𝑎2 =-0.19; 90% HDPI: -0.63  – 208 

0.36), and the effect of precipitation was stronger and positive (𝛽1 =0.92; 90% HDPI: 0.2  – 1.75; 209 

Figure 2).  Overall, the results of these models provide evidence for a shift from negative to positive 210 

direct density-dependence from the first to the second part of the series, with non-overlapping 90% 211 

intervals between the two parts (𝑎1 =-1.19 – -0.13 vs. 0.03 – 0.82), although 95% intervals did have a 212 

marginal overlap (𝑎1 =-1.29 – 0.03 vs. -0.05 – 0.96; Figure 2). This corresponds with a shift from type 213 

III to type IV dynamics (Figure 3) and a shift from shorter to longer period dynamics.   214 

The results from simulation analyses suggested that the long-period dynamics observed in the 215 

second part of the series (2004-2019) could best recreate the observed dynamics. Specifically, there 216 

was some evidence that endogenous dynamics as parameterized from the second part of the series best 217 

recovered the observed shift in dynamical regime when used to simulate dynamics for the entire series, 218 

based on the maximum a posteriori dissimilarity calculated from wavelet transforms (Figure 4, 219 

S1,Table S3; Rouyer et al. 2008; Gouhier et al. 2019). This was the case both in simulations which 220 
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used the original fitted precipitation parameters, and in simulations in which the effect of precipitation 221 

was set to the same value to examine solely the effect of different endogenous dynamics (lowest 222 

dissimilarity: d=17.6; whole series: d=22.1, 18.5; first part: d=22.8, 21.4; Figure 4, S1, Table S3). 223 

Simulations including density-dependence reproduced dynamics somewhat better (d=17.6) than 224 

simulations without density-dependence (d=19.7).  The broad posterior intervals of simulation results 225 

indicated substantial uncertainty as to the mechanisms driving observed shifts (Figure 4). However, to 226 

the extent that we are interested in the question of whether specific endogenous dynamics (i.e., specific 227 

parameter values) underlie the observed shift in dynamics, the point estimates from the second part of 228 

the series best reproduced dynamics. Overall, results were consistent with the interpretation that the 229 

shift in dynamics was driven either by an interaction between endogenous dynamics and precipitation, 230 

or possibly solely by precipitation (Figure 4).  231 

Discussion 232 

 Our analyses together suggest that over the census period, the changing structure of variation in 233 

precipitation dynamics interacted with the structure of endogenous dynamics of caterpillar populations 234 

to generate novel dynamics. This resulted in higher amplitude, long-period oscillations in the second 235 

part of the series (2004-2019), in which both the lowest (2005) and the highest (2019) caterpillar 236 

population densities were observed. This is in contrast with the first part of the census (1986-2004) 237 

which was characterized by weak lower amplitude and short-period oscillations. These shifts in 238 

oscillatory period corresponded with a shift from negative direct and delayed density-dependence (type 239 

III dynamics) to positive direct and negative delayed density dependence (type IV dynamics). Although 240 

many parameter posterior intervals overlapped zero, there was strong statistical evidence for our main 241 

hypothesis, showing a shift from direct density-dependence to negative density dependence during the 242 

study (Figure 2,3).  This shift in dynamics appears to have been due to changing patterns of variation in 243 

environmental forcing and illustrates the complexity of forecasting impacts of changes in both mean 244 

and pattern of variation in future climates on population dynamics. 245 
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Simulation studies have shown that environmental noise can resonate with the dominant period 246 

of deterministic endogenous dynamics of a system if the noise spectra includes the period of the 247 

deterministic system (Royama 1992; Alonso et al. 2007). Environmental variation may also impose its 248 

own spectral signature on population dynamics with different dominant periods (Greenman & Benton 249 

2003).  Given these observations, there are multiple possible mechanistic explanations for the shift in 250 

dynamics observed in this study.  One possible interpretation is that the interaction between the 251 

endogenous dynamical structure of this population with changing exogenous perturbation (i.e., 252 

precipitation) obscured the endogenous dynamics in one part of the series, but not the other (Ranta et 253 

al. 2000). Another interpretation is that dynamical shifts may have been entirely externally forced by 254 

changing precipitation dynamics. We distinguished between these possibilities by simulating 255 

deterministic population trajectories from fitted state-space models using observed precipitation, which 256 

indicated that the dynamics from the second part of the series were somewhat more likely to have 257 

represented the underlying endogenous dynamics of the system. This indicates that short-period 258 

oscillations in precipitation may have interfered with delayed density-dependence in the endogenous 259 

dynamics to generate the observed population dynamics in the first half of the caterpillar time series.  260 

By imposing short-period oscillations onto population dynamics, external forcing by precipitation may 261 

have created only the appearance of negative direct density-dependence. During the second half of the 262 

series, longer period oscillations of precipitation may have resonated with delayed density-dependence 263 

and generated high-amplitude long-period oscillations. This interpretation is supported by the fact that 264 

simulations including negative direct density-dependence (i.e., the model from the first part of the 265 

series) prevented the resonance of precipitation with delayed density-dependence and did not recreate 266 

the original dynamics quite as effectively as models with positive direct density-dependence (Figure 4, 267 

S7-8, Table S3). Furthermore, the possibility that observed shifts in dynamics were driven completely 268 

externally by precipitation seems less likely because simulations lacking density-dependence did not as 269 

effectively recover the original shift in dynamics as simulations including density-dependence.  270 
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However, if we consider the uncertainty of parameter estimates in the simulation results, we cannot be 271 

confident in distinguishing between alternative scenarios, as all simulation posteriors overlap 272 

substantially (Figure 4).  Nonetheless, despite the limited information contained within our 34-year 273 

population time series, our simulations allowed us to compare the relative evidence for alternate 274 

mechanisms that might have caused the observed shift. 275 

The dynamics that we describe during the first part of the series are consistent with previous 276 

work, which indicated that precipitation positively affects caterpillar population growth rates and 277 

interacts with endogenous dynamics of overcompensating negative direct density-dependence (Karban 278 

& de Valpine 2010; Karban et al. 2017).  Mechanisms proposed to explain the effect of precipitation 279 

include limited resources during summer drought (Karban & de Valpine 2010), or negative effects of 280 

precipitation on predatory ants (Karban et al. 2017). Parasitism and viral infection are potential 281 

mechanisms for both direct and delayed density-dependence in this population, as they are in many 282 

insects and particularly Lepidoptera (Myers & Cory 2013, 2016). Parasitism and viral infection can 283 

induce density-dependence in insect population dynamics when parasitoids are host-specific and 284 

display numerical responses to host density, and when virus transmission depends on host density 285 

(Myers & Cory 2013). Delays in the action of density-dependence may be caused by delayed numerical 286 

responses of parasitoids (Myers & Cory 2013), or a greater prevalence of covert viral infections or viral 287 

occlusion bodies in the environment after high-density years (Myers & Cory 2016). Long-term 288 

monitoring data revealed no delayed density-dependent parasitism in this population (Karban & de 289 

Valpine 2010). However, laboratory rearing of A. virginalis from multiple monitored populations 290 

suggested a delayed-density dependent rate of viral infection (Pepi, Pan & Karban, unpublished data) 291 

as is the case in many Lepidoptera (Anderson & May 1980; Myers & Cory 2013, 2016). 292 

In contrast, the dynamics of the second part of the series (2004-2019) were not predictable from 293 

our previous understanding of caterpillar population dynamics derived from analyses of time series that 294 

were long by ecological standards (20 years, 1986-2006; Karban & de Valpine 2010).  This type of 295 
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non-stationarity due to shifts in climatic regimes has large implications for forecasting and managing 296 

populations of threatened or pest species, because such shifts have the potential to obfuscate 297 

predictions about management actions.  Ecological forecasting has become an urgent goal in light of 298 

global change and unprecedented human pressures on the biosphere (Clark et al. 2001).  Whereas most 299 

literature has focused on predicting ecological state variables (e.g., population size; Dietze 2017) , we 300 

examined how changing patterns of climate interacted with endogenous population drivers to 301 

qualitatively change dynamics.  This illustrates the importance of considering the interaction between 302 

endogenous population drivers and exogenous climate variation in projecting population dynamics into 303 

the future, and argues that incorporating changes in patterns of climate into predictions is essential.   304 

The fact that the qualitative range of dynamics in populations is to some extent limited (i.e., 305 

there are not ten million types of population dynamics; Lawton 1992) makes predicting shifts in 306 

population dynamics due to climate change a more attainable prospect. Consistent with this, most 307 

populations have either first or second order, and either chaotic or non-chaotic dynamics (Types I-IV 308 

and I’-IV’ in Fig. 2; also see Royama 1992), in addition to some other important axes of variation 309 

(Turchin 2003; Barraquand et al. 2017). Ecologically, the presence of overcompensating (type II-III) 310 

density dependence, a stable equilibrium (type I), or longer period cycles (type IV) have important 311 

effects on species interactions, ecosystem dynamics, and how climate is likely to affect dynamics 312 

(Ranta et al. 2000; Ims et al. 2008).  Mechanistic studies separating endogenous from exogenous 313 

components of dynamics can distinguish whether observed dynamics, such as cycles, arise from 314 

different mechanisms. Some of these mechanisms include self-sustaining or noise-sustained second 315 

order dynamics, externally-forced first order dynamics (Barraquand et al. 2017), and non-cyclic 316 

dynamics that mask endogenous second-order dynamics, as we found support for in the present study 317 

(Greenman & Benton 2003).  The application of methods such as those implemented in the present 318 

study can help distinguish between different possible combinations of endogenous and exogenous 319 

components of a system that might have generated the observed dynamics. Doing so will improve our 320 
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ability to understand how changes in exogenous forcing due to climate change are likely to affect future 321 

population dynamics. 322 
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 419 

Figure 1:  (a) Time series of caterpillar population counts per 100 m2 (solid black line) and total annual 420 

precipitation (dashed blue line); (c) local wavelet transform of caterpillar population counts; (e) local 421 

wavelet transform of total annual precipitation; (g) wavelet coherence between total annual 422 

precipitation and caterpillar population counts; (b,d,f) global spectra of (a,c,e); (h) global coherence of 423 

(g), total annual precipitation and caterpillar population counts. The dashed red line through (a,c,e,g) 424 

represents the time threshold found in the change-point analysis including precipitation. Caterpillar 425 

density and spectral period are shown on a log scale; total annual precipitation is shown on the right 426 

axis. Solid black lines in (c,e,g) delimit regions of significant periodicity or coherence at a 95% 427 

confidence level from a bootstrap test. Color bars in (c,e,g) show the scale power from low (blue) to 428 

high (red). Caterpillar wavelet spectrum is shown in (a) with a solid line, and precipitation wavelet 429 

spectrum is shown with a dashed line.  Dashed red lines in (d,f) show the 95% confidence threshold 430 

from a bootstrap test; peaks to the right of the line represent significant periodicity.  431 
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 432 

Figure 2: Bayesian posterior 90% and 95% (broad to narrow lines) posterior intervals, and point 433 

estimates of parameters from Poisson state-space models.  Estimates from the whole series are shown 434 

in black (1986-2019), before the threshold in blue (1986-2004), and after the threshold in red (2004-435 

2019). 436 
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 438 

Figure 3.  Posterior distributions of Bayesian state space models fit to the first part of the series (1986-439 

2004), the second part of the series (2004-2019) and the whole series (1986-2019), plotted in the 440 

Royama parameter plane, showing a shift from type III to type IV dynamics. Open circles represent the 441 

median of the posterior distributions. 442 
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 444 

Figure 4.  Simulation 90% and 95% (broad to narrow lines) posterior intervals and point estimates of 445 

dissimilarity values relative to the true population trajectories, from multiple mechanistic scenarios. 446 

 447 
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 457 

Model Period 𝒂𝟏 [P] 𝒂𝟐 [P] 𝜷𝟏[P] 

Without 

Precipitation 
1986-2002 -0.56 [P=0.098] -0.44 [P=0.211]  

2002-2019 0.35 [P=0.109] -0.52 [P=0.019]  

With 

Precipitation 
1986-2004 -0.57 [P=0.091] -0.41 [P=0.209] -0.01 [P=0.098] 

2004-2019 0.510 [P=0.027] -0.286 [P=0.218] 1.27 [P=0.026] 

Table 1. Results of change-point analysis, including parameter estimates and P values, from models 458 

with and without precipitation, before and after change-point thresholds.  459 
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Supplementary Materials: 477 

Process model ∆WAIC WAIC 𝒂𝟎  [2.5%,97.5%] 𝒂𝟏  [2.5%,97.5%] 𝒂𝟐  [2.5%,97.5%] 𝜷𝟏[2.5%,97.5%] 

1986-2019:       
𝑿𝒕~ 𝒂𝟎 + 𝒂𝟏𝑿𝒕−𝟏 + 𝒂𝟐𝑿𝒕−𝟐 + 𝜷𝟏𝑷𝒓𝒆𝒄𝒊𝒑𝒕−𝟏 1.38 201.78 -1.28 [-2.13, -0.46] 0.11 [-0.31, 0.53] -0.30 [-0.70, 0.01] 0.30 [-0.18, 0.78] 

𝑿𝒕~ 𝒂𝟎 + 𝒂𝟏𝑿𝒕−𝟏 + 𝜷𝟏𝑷𝒓𝒆𝒄𝒊𝒑𝒕−𝟏 1.00 201.40 -1.01 [-1.50, -0.52] 0.03 [-0.29, 0.35] - 0.36 [0.01, 0.70] 

𝑿𝒕~ 𝒂𝟎 + 𝒂𝟏𝑿𝒕−𝟏 + 𝒂𝟐𝑿𝒕−𝟐 1.36 201.76 -1.34 [-1.62, -0.52] 0.11 [-0.32, 0.53] -0.35 [-0.750, 0.05] - 

𝑿𝒕~ 𝒂𝟎 + 𝒂𝟏𝑿𝒕−𝟏 0.96 200.76 -1.05 [-1.75, -0.36] 0.05 [-0.37, 0.46] - - 

𝑿𝒕~ 𝒂𝟎 + 𝜷𝟏𝑷𝒓𝒆𝒄𝒊𝒑𝒕−𝟏 0.0* 200.4*  0.05 [-0.28, 0.38] - - 0.40 [0.018, 1.04] 

𝑿𝒕~ 𝒂𝟎 0.13 200.53  0.04 [-0.59, 0.68] - - - 

1986-2004:       

𝑿𝒕~ 𝒂𝟎 + 𝒂𝟏𝑿𝒕−𝟏 + 𝒂𝟐𝑿𝒕−𝟐 + 𝜷𝟏𝑷𝒓𝒆𝒄𝒊𝒑𝒕−𝟏 0.52 117.37 -1.74 [-2.92, -0.61] -0.63 [-1.29, 0.03] -0.27 [-0.89, 0.34] 0.26 [-0.27, 0.78] 

𝑿𝒕~ 𝒂𝟎 + 𝒂𝟏𝑿𝒕−𝟏 + 𝜷𝟏𝑷𝒓𝒆𝒄𝒊𝒑𝒕−𝟏 0.57 117.41 -1.48 [-2.17, -0.81] -0.57 [-1.10, -0.03] - 0.27 [-0.24, 0.77] 

𝑿𝒕~ 𝒂𝟎 + 𝒂𝟏𝑿𝒕−𝟏 + 𝒂𝟐𝑿𝒕−𝟐 0.00* 116.85* -1.68 [-2.87, -0.55] -0.57 [-1.23, 0.08] -0.26 [-0.90, 0.38] - 

𝑿𝒕~ 𝒂𝟎 + 𝒂𝟏𝑿𝒕−𝟏 0.11 116.96 -1.46 [-2.17, -0.78] -0.53 [-1.06, -0.03] - - 

𝑿𝒕~ 𝒂𝟎 + 𝜷𝟏𝑷𝒓𝒆𝒄𝒊𝒑𝒕−𝟏 0.72 117.57 -0.17 [-1.06, 0.72] - - 0.09 [-0.81, 0.98] 

𝑿𝒕~ 𝒂𝟎 0.81 117.66 -0.18 [-1.03, 0.68] - - - 

2004-2019:       

𝑿𝒕~ 𝒂𝟎 + 𝒂𝟏𝑿𝒕−𝟏 + 𝒂𝟐𝑿𝒕−𝟐 + 𝜷𝟏𝑷𝒓𝒆𝒄𝒊𝒑𝒕−𝟏 0.00* 86.32* -0.58 [-1.98, 0.79] 0.46 [-0.05, 0.96] -0.19 [-0.74, 0.36] 0.92 [0.01, 1.87] 

𝑿𝒕~ 𝒂𝟎 + 𝒂𝟏𝑿𝒕−𝟏 + 𝜷𝟏𝑷𝒓𝒆𝒄𝒊𝒑𝒕−𝟏 1.65 87.97 -0.22 [-1.50, 0.96] 0.60 [0.01, 1.15] - 1.14 [0.24, 1.15] 

𝑿𝒕~ 𝒂𝟎 + 𝒂𝟏𝑿𝒕−𝟏 + 𝒂𝟐𝑿𝒕−𝟐 0.53 86.85 -1.30 [-2.78, 0.06] 0.340 [-0.23, 0.89] -0.46 [-1.02, 0.01] - 

𝑿𝒕~ 𝒂𝟎 + 𝒂𝟏𝑿𝒕−𝟏 1.13 87.45 -0.72 [-2.27, 0.71] 0.35 [-0.32, 1.00] - - 

𝑿𝒕~ 𝒂𝟎 + 𝜷𝟏𝑷𝒓𝒆𝒄𝒊𝒑𝒕−𝟏 1.76 88.08  0.45 [-0.35, 1.23] - - 1.37 [0.45, 2.28] 

𝑿𝒕~ 𝒂𝟎 1.02 87.34  0.33 [-0.79, 1.46] - - - 

Table S1. Results of Bayesian state space time series model selection, by period of series analyzed and 478 

the process model structure. Change in WAIC relative to the best model (∆WAIC), WAIC, and parameter 479 

estimates with 95% posterior intervals are shown. WAIC values within ∆WAIC <2 of the best model are 480 

bolded, and the best model is bolded.  Parameter estimates the 95% posterior intervals which do not 481 

overlap zero are bolded as well. 482 
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 494 

 495 

Series Original 

Whole 

series, 

fitted 𝜷𝟏 

Part I, 

fitted 𝜷𝟏 

Part II, 

fitted 𝜷𝟏 

Whole 

series, 

equal 

𝜷𝟏 

Part I, 

equal 

𝜷𝟏 

Part II, 

equal 

𝜷𝟏 

Part II, 

no 𝒂𝟏, 𝒂𝟐 

Original 0        

Whole series, fitted 𝜷𝟏 22.14 0       

Part I, fitted 𝜷𝟏 22.80 10.38 0      

Part II, fitted 𝜷𝟏 17.55 10.17 16.51 0     

Whole series, equal 𝜷𝟏 18.54 11.87 15.89 11.30 0    

Part I, equal 𝜷𝟏 21.42 19.56 18.19 16.44 17.58 0   

Part II, equal 𝜷𝟏 17.55 10.17 16.51 0 6.22 16.5 0  

Part II, no 𝒂𝟏, 𝒂𝟐 19.72 12.73 15.84 6.52 6.37 13.75 6.67 0 

Table S2.  Dissimilarity matrix of simulated time series from fitted state-space process models, with 496 

original fitted parameters and with effect of precipitation set to equal at the highest fitted value 497 

(𝛽1=0.922), all compared with the original observed time series. Lowest dissimilarities relative to the 498 

original series for simulations with fitted or equal 𝛽1 values are bolded. 499 
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 511 

Series Parameter 𝑎0  𝑎1 𝑎2  𝛽
1
 

Whole Series 𝑎0  1    

 𝑎1 0.584 1   

 𝑎2 0.551 -0.014 1  

 𝛽1 0.109 0.001 0.157 1 

Part I 𝑎0  1    

 𝑎1 0.744 1   

 𝑎2 0.739 0.465 1  

 𝛽1 -0.116 -0.214 -0.049 1 

Part II 𝑎0  1    

 𝑎1 0.491 1   

 𝑎2 0.628 -0.116 1  

 𝛽1 0.501 0.207 0.520 1 

Table S3. Cross-correlation matrices between parameter estimates from MCMC chains the full state 512 

space model from the whole series, part I and part II. 513 
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Year Caterpillar count Lupine area (m2) 

1986 490 400 

1987 8 101.35 

1988 12 53.75 

1989 25 51 

1990 48 61.24 

1991 7 41.5 

1992 71 63.75 

1993 5 29.25 

1994 16 59.75 

1995 15 20.5 

1996 40 18.05 

1997 2 20 

1998 8 20 

1999 12 18 

2000 8 38 

2001 40 31.5 

2002 18 63 

2003 52 45.5 

2004 3 64.5 

2005 0 57.5 

2006 2 34 

2007 51 35 

2008 40 32.5 

2009 9 62 

2010 2 51.5 

2011 23 27.75 

2012 27 15.5 

2013 2 40 

2014 8 33 

2015 3 29.5 

2016 13 38 

2017 7 30 

2018 22 21 

2019 131 26 

Table S4.  Year, caterpillar counts, and area of lupine surveyed. 527 

 528 

 529 



 

Climate variation and population dynamics 

 530 

 531 

Figure S1.  MCMC trace and density plot of parameters from full state space model of the whole 532 

series. 533 
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535 

 536 

Figure S2.  MCMC trace and density plots of parameters from full state space model of the first part of 537 

the series. 538 
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 539 

 540 

Figure S3.  MCMC trace and density plots of parameters from full state space model of the second part 541 

of the series. 542 
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Figure S4.  Posterior predictive simulations from full state space model of the whole series, with the 544 

observed trajectory in black, and one-step ahead simulations from 15 draws from the posterior in blue. 545 

 546 
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Figure S5.  Posterior predictive simulations from full state space model of the first part of the series, 550 

with the observed trajectory in black, and one-step ahead simulations from 15 draws from the posterior 551 

in blue. 552 
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Figure S6.  Posterior predictive simulations from full state space model of the second part of the series, 555 

with the observed trajectory in black, and one-step ahead simulations from 15 draws from the posterior 556 

in blue. 557 
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Figure S7.  Wavelet transformations of simulated trajectories from fitted state-space process models. 561 

(a,c,e) Simulations using original fitted values, and (b,d,f) using fitted values for density-dependence 562 

but the highest values for precipation. (a,b) Models of the whole series, (c,d) before the threshold, and 563 

(e,f) after the threshold. Black lines delimit regions of significant periodicity or coherence at a 95% 564 

confidence level from a bootstrap test. Color bars show the scale for power from low (blue) to high 565 

(red). 566 
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Figure S8. Fifty simulation trajectory results (blue) vs. true population trajectory (black) from 569 

simulation based on the models (left to right, top to bottom) from the whole series, part I, part II , the 570 

whole series with precipitation values from part II, part I with precipitation values from part II, and part 571 

II without density dependence. 572 
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